POWER FOR ALL FACT SHEET Decentralized Renewables: Powering a Climate-Friendly Future

1Gt CO2e COULD BE AVOIDED EACH YEAR

300 EQUIVALENT NUMBER OF COAL PLANTS OFFLINE

Join the conversation:

powerforall.org twitter.com/power4all2025 facebook.com/pwr4all By 2030, replacing toxic kerosene and diesel off-grid generation with decentralized renewable energy (DRE) could save almost a gigaton of CO₂ and CO₂ equivalent (e)¹ each year: the same as the annual CO₂ and CO₂e emissions of Germany.² Given the unprecedented opportunity DRE also presents to drive a sustainable development path and lift 1+ billion people from fuel poverty, it has been dubbed the "low-hanging fruit" of the climate-world.³

Decentralized renewables can combat climate change

- » Eliminating black carbon from kerosene lamps globally can reduce emissions by 240 million tons CO₂e per year⁵—the same as taking 80 coal power plants offline⁶
- » 4 million solar home systems in Bangladesh already save 1.5 million tons CO₂e per year due to a reduction in kerosene use⁷—equivalent to taking passenger cars off the road for 3.5 billion miles⁸
- » Eliminating CO₂ and black carbon from diesel mini-grids can reduce emissions by 115 million tons of CO₂ per year⁹—the same as taking 38 coal-fired power stations offline¹⁰
- » Millions more tons of CO₂ and black carbon will also be eliminated by replacing standalone diesel generators.¹¹ Per kWh, small diesel generators create 2x the CO₂ emissions of coal power plants¹²
- » The potential avoided emissions per year globally by 2030 due to distributed renewables is estimated as 0.8–0.9 Gt CO₂e¹³—the same as taking 270-300 coal power plants offline¹⁴
- » Using a common \$15/tCO₂e carbon price to put a cost on emissions (a low but commonly used valuation) avoiding 0.8-0.9Gt Gt CO₂e is equal to an avoided carbon cost of \$4-4.5 billion each year¹⁵
- » Smaller, easily deployable and locally maintained distributed renewables are boosting climate-resilience. A month after the devastation of Hurricane Matthew, the grid was still down in areas of Southern Haiti. Solar mini-grids were running in 55 hours¹⁶

POWER FOR ALL FACT SHEET Decentralized Renewables: Powering a Climate-Friendly Future

By the Numbers:

1Gt CO2e COULD BE AVOIDED EACH YEAR

300 EQUIVALENT NUMBER OF COAL PLANTS OFFLINE

Share the Message

DRE enhances climate security by providing a safe sustainable alternative to the toxic kerosene and diesel used in hundreds of millions of unelectrified households. Switching to DRE will rapidly reduce emissions, improve lives, and set emerging economies on a critical low-carbon path to energy access. Share these messages with key stakeholders:

- » Switching to decentralized renewables from polluting energy such as kerosene lamps will save almost a Gt CO₂e each year by 2030—equal to the annual emissions of Germany
- » Due to the extraordinary benefits to the lives of those living in some of the world's poorest communities, replacing toxic kerosene with decentralized renewables has been termed the "low-hanging fruit" of the climate world
- » The energy that will rapidly increase energy access, is the same clean energy that will combat climate change—we must support a radical shift to decentralized renewables

Sources:

- 1. UNFCCC (2015) Facilitating Technology Deployment in Distributed Renewable Electricity Generation. Estimates based on IRENA analysis of life-cycle GHG emissions, including avoided black carbon emissions due to the replacement of kerosene lamps. Black carbon and other greenhouse gases are measured in CO2 equivalent to enable comparison with CO2
- 2. Umweltbundesamt (2016) UBA emissions data for 2015 indicate urgent need for consistent implementation of Climate Action Programme 2020
- 3. Berkeley News (2012) Let there be light
- 4. Jacobson et al (2013) Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development. Brookings Institute
- 5. Lam et al (2012) Household Light Makes Global Heat: High Black Carbon Emissions From Kerosene Wick Lamps. Environ. Sci. Technol., 2012, 46 (24), pp 13531–13538
- 6. Platform for Energy Access Knowledge (PEAK) analysis calculated using CO2e figures and Koomey et al metric for emissions from an average coal plant; Koomey, J. et al (2010) Defining a standard metric for electricity savings. Environ. Res. Lett. 5, 014017
- 7. PEAK analysis calculated using Asaduzzaman et al. analysis of usage of different types of kerosene lamps in Bangladesh and emissions figures for kerosene lamps; Asaduzzaman et al. (2010) Restoring Balance: Bangladesh's Rural Energy Realities
- 8. US Environmental Protection Agency (2016) Greenhouse Gas Equivalencies Calculator
- 9. PEAK analysis calculated using data on diesel based mini-grids from IRENA; "Analysis of Diesel-based Mini-grids for Enabling the Implementation of Renewable Energies" (2012)
- 10. PEAK analysis calculated using CO2e figures and Koomey et al metric for emissions from an average coal plant; Koomey, J. et al (2010) Defining a standard metric for electricity savings. Environ. Res. Lett. 5, 014017
- 11. Using Nigeria as just one example, estimates for the number of stand alone diesel generators range from 9 million to 100 million (9 million is noted as a low estimate). 9 million diesel generators have been calculated to produce 29 million tonnes of CO2, 100 million would create 320 million tonnes. Millions more generators are found in other countries around the world.
- 12. Moss, T. & Gleave, M (2014) How Can Nigeria Cut CO2 Emissions by 63%? Build More Power Plants
- 13. UNFCCC (2015) Facilitating Technology Deployment in Distributed Renewable Electricity Generation. Estimates based on IRENA analysis of life-cycle GHG emissions, including avoided black carbon emissions due to the replacement of kerosene lamps
- 14. PEAK analysis calculated using CO2e figures and Koomey et al metric for emissions from an average coal plant; Koomey, J. et al (2010) Defining a standard metric for electricity savings. Environ. Res. Lett. 5, 014017
- 15. Analysis by PEAK team at UC Berkeley calculated using conservative carbon cost of \$15/tCO2eq and a median value IPCC discount rate (8%)
- 16. Sigora International (2016)